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This paper presents the use of the Differential Evolution algorithm as an optimization method for 2D electromagnetic scattering
problem solved by interpolating Element-Free Galerkin (EFG) meshless method. It is considered the TMz plane wave scattering by a
z-infinite dielectric cylinder. The numeric and analytic solutions are compared by using the L2 norm error. The Differential Evolution
method is applied in order to find good sets of interpolating EFG parameters that minimize the L2 norm error.
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I. INTRODUCTION

MESHLESS methods have been used to numerically
solve partial differential equations associated to prac-

tical problems in several science areas like structure and fluid
mechanics and, more recently, electromagnetic problems [1]–
[4]. This class of methods does not use a previously created
mesh to discretize the domain so that it is specially suitable to
solve problems involving complex or variable geometries.

The Element-Free Galerkin Method (EFG) [5] is currently
one of the most popular meshless methods. Additionally to the
mesh independence benefits, it features a symmetric resultant
linear system matrix, which is important since this matrix
has to be inverted and hence cannot be singular. EFG also
presents ease of discretization and independence of integration
in the weak form. Recent works use EFG and the Interpolating
Moving Least Square method (IMLS) to obtain shape functions
that satisfy the Kronecker Delta property [2]–[4].

Despite the good characteristics of the EFG-IMLS method,
it involves choosing appropriated parameters values (e.g. ABC
radius, number of nodes/integration cells) that lead to accurate
results. So, it is opportune to use optimization methods to find a
set of optimal values for these parameters. In this scenario, the
Differential Evolution (DE) method appears as a good option
due to its main features: ease of implementation, fast con-
vergence (when compared to other evolutionary methods) and
ability to work with non differentiable non convex objective
functions [6].

This work applies the DE method to optimize the electro-
magnetic scattering problem involving a TMz plane wave and
a z-infinite dielectric cylinder solved by EFG-IMLS method.

II. 2D EM SCATTERING AND EFG-IMLS FORMULATIONS

The scattering problem under investigation consists in an
infinite cylinder Ω1 along the z-axis direction, formed by a
dielectric material of relative permittivity εr and which radius
is ρr, as shown in Fig. 1. This scatterer is located in free space
(Ω2) and is illuminated by a TMz plane wave. The solution
domain, Ω = Ω1∪Ω2, is limited by the boundary Γ. The total
electric field E, which has only the z-component, is calculated
by the bi-dimensional scalar Helmholtz equation∇2Ez+k

2
0Ez=

0, where k0 is the vacuum wave number [3].

Ei = E0e -jkx
ẑz

ρr

Ω2
Ω1

n

εr

Γρc

x

y

z

Fig. 1. 2D scattering problem.

The weak form for the problem can be obtained by multiply-
ing a test function w by the residue of Helmholtz equation. The
product is integrated on Ω and the Gauss’ divergence theorem
is applied to the result. It is necessary to establish a global
boundary Γ, located at a distance away from the scatterer,
where an Absorbing Boundary Condition (ABC) is imposed.
Using a first order Bayliss-Turkel ABC, the weak form is [3]:∫
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where γ=1/µr [jk0+1/(2ρr)], q=1/µr
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)
, µr

is the relative permeability, Ei
z is the incident electric field and

n is the unitary vector which direction is perpendicular to Γ,
In the EFG approach, NN nodes located by xi =(x, y) ∈ Ω

are distributed over the domain. To each node must be associ-
ated a shape function Φi so that Φi =0 for the whole domain
Ω, except a region near xi. Thus, the unknown function Ez

can be approximated by the trial function Eh(x) [7]:

Eh(x) =
∑NN

i=1
Φi(x)vi, (2)

where vi are unknown coefficients. In EFG-IMLS, Φi is
determined by using the local approximation:

Eh(x, xi)=
∑m

i=1
pi(xi)ai(x) ≡ pT (xi)a(x), (3)

where pT (x)=[1, x, y] is a polynomial base with m = 3 mono-
mial terms, and a(x) are unknown polynomial coefficients. In
the IMLS approximation used in this work, a(x) are determined
by minimizing a weighted discrete L2 norm, for which weight
function is W(r)=1/(rn+βn), where β is a constant which
value must be small enough to ensure no division by zero, n



is a constant adjusted to improve the accuracy, and r is the
support radius of influence domain for each node [2], [3].

III. DIFFERENTIAL EVOLUTION OPTIMIZATION

The DE algorithm is a stochastic population-based function
minimizer suitable for non-differentiable functions and capable
of fast convergence. Its basic operators are defined as follows.

Let XG = {xG,i, i = 1, ... , NP} an initial population
formed by NP individuals xG,i, that is, solution candidates
vectors, each with n parameters. The mutation operator adds
the difference between any two randomly selected individuals
(the difference vector) to a third individual, also randomly
picked, in order to create a mutated population, VG+1, that is,
vG+1,i = xG,r1+ F (xG,r2− xG,r3), r1 6= r2 6= r3 6= i ∈ [1, NP ]
where vG+1,i is a mutant individual, and F is a scale factor
applied to the difference vector length [6].

The population diversity can be increased by combining
individuals fromXG with others from VG+1. This is the cross-
over operation which has a CR probability of occurring [6].

uG+1,i,j =

{
vG+1,i,j if U[0,1] ≤ CR ∨ j=δi

xG,i,j otherwise
(4)

where δi ∈ [1, n] is a randomly selected index and U[0,1] is a
uniformly distributed random number between 0 and 1. Here,
the operators are defined as in the DE basic form. Other DE
schemes may use different operator definitions [6].

The objective function f(·) is evaluated for each uG+1,i and
the result is compared to that obtained by evaluating f(xG,i).
If f(xG,i) > f(uG+1,i), uG+1,i replaces the corresponding
individual xG,i in the initial population for the next generation
[6]. The problem restrictions where treated by penalty method.

After executing a given number of iterations, the algorithm
returns the minimum value found for f(·) and the correspond-
ing set of optimal parameters.

IV. RESULTS

Aiming to verify the pertinence of the optimization strategy
presented in this work, the cylinder described in Section II is
analysed in three different radius: 0.1λ, 0.3λ and 0.5λ, with
the vacuum wavelength λ=1m. The cylinder material relative
permittivity is εr=2. The numeric solution calculated by EFG-
IMLS algorithm is checked against the analytical solution (AS)
by the following L2 norm error over the whole domain Ω [3]:
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2
dΩ×100% (5)

Three EFG-IMLS parameters were defined to be optimized:
the ABC radius ρc, the number of nodes employed and the
integration cells number. In this work all simulation are carried
out using four Gauss integration points in each cell. The three
optimized parameters are related to each other and are decisive
to the result accuracy and performance requirements.

For optimization process, different values of these parame-
ters are placed in vector-individuals that form the populations
in each DE generation. When the minimum error is found,
the corresponding vector-individual is the optimized set of
parameters.

TABLE I
EL2 NORM PERCENT VALUES CALCULATED BY DE-EFG ALGORITHM

Cyl. radius Optimal Maximun Mean Std. deviation
0.1λ 0.2590 0.3342 0.2927 0.0123
0.3λ 1.1286 1.8918 1.5459 0.1462
0.5λ 4.0197 5.2672 4.7113 0.2837

TABLE II
OPTIMAL EFG-IMLS PARAMETERS FOUND BY DE ALGORITHM

Cyl. radius ABC radius Number of nodes Number of cells
0.1λ 2.4853 340 10572
0.3λ 1.9983 340 5544
0.5λ 1.8394 411 7876

The DE algorithm is set to run 50 iterations using popula-
tions of 15 individuals, then it is executed 100 times for each
case. F varies randomly in [0.5, 1] and CR is set to 0.5.

Table I shows the summarized results. For each case,
columns 2, 3 and 4 have the optimal, maximum and mean EL2

values. Column 5 has the standard deviation for the samples.
Table II contains the optimal parameters for each analysed case.

This data shows that coupling DE optimizer with the EFG-
based algorithm makes possible to find combinations of suit-
able parameters to solve the electromagnetic scattering problem
using the EFG-IMLS method for different cylinder radius,
while keeping acceptable error values, when comparing to
the analytical solution. For Case 2, e.g., in 95% of DE-EFG
executions, EL2 norm is expected to be less than 1.69%.

V. CONCLUSION

This work presents a technique to choose optimal combi-
nations of parameters values to EFG-IMLS meshless method
applied in the solution of 2D electromagnetic scattering in
order to obtain accurate numerical results. The DE algorithm
proved to be suitable to this task, since it was possible to obtain
different sets of parameters values which lead to EL2 norm
values less than 5.0%, in the worst case analysed.
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